Lean burn otto cycle

As the piston nears the bottom of its stroke it first uncovers the exhaust port allowing the high pressure exhaust gases to be expelled. Further downwards movement of the piston towards the bottom of its travel uncovers the inlet port allowing the pressurised air-fuel mixture charge from the crank case to rush into the cylinder helping to sweep out any remaining exhaust gases in a process known as scavenging. The top of the piston is usually shaped to prevent the incoming fuel mixture from escaping out of the exhaust port. When the piston reaches the bottom of its travel the cycle starts again.

Generally, octane ratings are higher in Europe than they are in North America and most other parts of the world. This is especially true when comparing the lowest available octane level in each country. In many parts of Europe, 95 RON (90-91 AKI) is the minimum available standard, with 97/98 RON being higher specification (being called Super Unleaded ). The higher rating seen in Europe is an artifact of a different underlying measuring procedure. In most countries (including all of Europe and Australia) the "headline" octane that would be shown on the pump is the RON, but in Canada, the United States and some other countries the headline number is the average of the RON and the MON , sometimes called the Anti-Knock Index (AKI), Road Octane Number (RdON), Pump Octane Number (PON), or (R+M)/2. Because of the 8 to 10 point difference noted above, this means that the octane in the United States will be about 4 to 5 points lower than the same fuel elsewhere: 87 octane fuel, the "regular" gasoline in Canada and the US, would be 91-92 in Europe. However most European pumps deliver 95 (RON) as "regular", equivalent to 90–91 US AKI=(R+M)/2, and deliver 98, 99 or 100 (RON) (93-94 AKI) labeled as Super Unleaded - thus regular petrol sold in much of Europe corresponds to premium sold in the United States.

The crankshaft (referred to as crank sometimes) is responsible for converting the explosive power generated from the combustion chamber, which is transferred through the piston and connecting rods, which in turn are connected to the crankshaft. It in turn controls the camshafts via the timing belts or chains and they control the valves and so the cycle continues. The crankshaft can be viewed as the backbone of the engine. The crankshaft is connected to a flywheel, which helps smooth out torque characteristics and this is in turn connected to the clutch. 

Otto engines are about 30% efficient; in other words, 30% of the energy generated by combustion is converted into useful rotational energy at the output shaft of the engine, while the remainder being losses due to waste heat, friction and engine accessories. [7] There are a number of ways to recover some of the energy lost to waste heat. The use of a Turbocharger in Diesel engines is very effective by boosting incoming air pressure and in effect, provides the same increase in performance as having more displacement. The Mack Truck company, decades ago, developed a turbine system that converted waste heat into kinetic energy that it fed back into the engine's transmission. In 2005, BMW announced the development of the turbosteamer , a two-stage heat-recovery system similar to the Mack system that recovers 80% of the energy in the exhaust gas and raises the efficiency of an Otto engine by 15%. [8] By contrast, a six-stroke engine may reduce fuel consumption by as much as 40%.

Let me close with one personal and anecdote .  When I began my nutritional journey, for over 18 months I still consumed a modest amount of carbohydrate, probably on the order of what a typical person in Japan would consume.  The biggest elimination in my diet was sucrose, HFCS, and “junk” carbohydrates. The results were impressive.  I went from being about 200 pounds at 25% body fat to being 177 pounds at 10% body fat while still consuming some carbohydrates (by that point I was down to maybe 100-150 gm per day).   However, I was able to get leaner (170 pounds, % body fat) and further improve my risk profile for disease by going below 50 gm per day (., entering nutritional ketosis).  Was this last step of nutritional ketosis necessary? Of course not, but it was a nice way to experience the full spectrum of carbohydrate restriction.  Will I ever go back to eating 100-150 gm per day of the “right” carbohydrates at some point? Probably, provided I don’t go back to eating sugar and stuffing my face with carbohydrates.  It will depend on what I’m optimizing for.

Lean burn otto cycle

lean burn otto cycle

Otto engines are about 30% efficient; in other words, 30% of the energy generated by combustion is converted into useful rotational energy at the output shaft of the engine, while the remainder being losses due to waste heat, friction and engine accessories. [7] There are a number of ways to recover some of the energy lost to waste heat. The use of a Turbocharger in Diesel engines is very effective by boosting incoming air pressure and in effect, provides the same increase in performance as having more displacement. The Mack Truck company, decades ago, developed a turbine system that converted waste heat into kinetic energy that it fed back into the engine's transmission. In 2005, BMW announced the development of the turbosteamer , a two-stage heat-recovery system similar to the Mack system that recovers 80% of the energy in the exhaust gas and raises the efficiency of an Otto engine by 15%. [8] By contrast, a six-stroke engine may reduce fuel consumption by as much as 40%.

Media:

lean burn otto cyclelean burn otto cyclelean burn otto cyclelean burn otto cyclelean burn otto cycle

http://buy-steroids.org